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Abstract

Leading- and trailing-edge serrations have been widely used to reduce the leading-

and trailing-edge noise in applications such as contra-rotating fans and large

wind turbines. Recent studies show that these two noise problems can be mod-

elled analytically using the Wiener-Hopf method. However, the resulting mod-

els involve infinite-interval integrals that cannot be evaluated analytically, and

consequently implementing them poses practical difficulty. This paper devel-

ops easily-implementable noise prediction models for flat plates with serrated

leading and trailing edges, respectively. By exploiting the fact that high-order

modes are cut-off and adjacent modes do not interfere in the far field except at

sufficiently high frequencies, an infinite-interval integral involving two infinite

sums is approximated by a single straightforward sum. Numerical comparison

shows that the resulting models serve as excellent approximations to the orig-

inal models. Good agreement is also achieved when the leading-edge model

predictions are compared with experimental results for sawtooth serrations of

various root-to-tip amplitudes, whereas a qualitative evaluation of TE noise

model shows that an accurate characterization of the wall pressure statistics be-

neath turbulent boundary layers is crucial for an accurate TE noise prediction.

Importantly, the models developed in this paper can be evaluated robustly in a

very efficient manner. For example, a typical far-field noise spectrum can be cal-

culated within milliseconds for both the trailing- and leading-edge noise models

on a standard desktop computer. Due to their efficiency and ease of numerical
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implementation, these models are expected to be of particular importance in

applications where a numerical optimization is likely to be needed.
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1. Introduction

Aerofoil noise is important in many applications such as contra-rotating

fans and large wind turbines. It often involves more than one noise generation

mechanism [1, 2]. Of particular relevance are the leading-edge (LE) noise and

the turbulent boundary-layer trailing-edge (TE) noise. LE noise is due to the5

scattering of velocity fluctuations of the incoming flow by the leading-edge of

an aerofoil, therefore it is common in applications with multi-row rotors/stators

where the wake flow due the front row impinges on the downstream blades/vanes

leading to strong flow-structure interactions, such as in jet engines and contra-

rotating fans. TE noise, on the other hand, is generated when a (most often)10

turbulent boundary layer convects past and then gets scattered by the trailing

edge of an aerofoil [3]. It is thus common in applications with highly turbulent

boundary layers, such as wind turbines.

One of the early research works on LE noise was conducted by Graham [4],

where similarity rules were established for the unsteady aerodynamic loading15

of the aerofoil due to sinusoidal gusts at subsonic speed. Following Graham,

Amiet [1] investigated the acoustic response of an aerofoil subject to sinusoidal

incoming gusts. Amiet used the Schwarzschild method and related the far-field

sound Power Spectral Density (PSD) to the wavenumber spectral density of the

incoming velocity fluctuations normal to the aerofoil. With an accurate model20

for the turbulence wavenumber spectral density, Amiet’s approach has been

shown to work well and become an important method for following studies.

A serrated LE has been proposed as one of the most promising approaches

to reduce LE noise [5, 6, 7, 8, 9], and extensive research has been carried out

to study its noise reduction performance and mechanisms. This includes ex-25

perimental studies such as those by Hansen et al. [8] and Narayanan et al.

[9], numerical investigations carried out by Lau et al. [10], Kim et al. [11] and

Turner and Kim [12], and analytical examinations such as those by Lyu and
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Azarpeyvand [13] and Ayton and Chaitanya [14].

Similarly, TE serrations have been widely used as an effective way of reduc-30

ing TE noise. A large bulk of literature on this is experimental work. These

include studies by Dassen et al. [15], Chong et al. [16], Moreau and Doolan

[17], Oerlemans et al. [18], Gruber et al. [19], Chong and Vathylakis [20], Leon

et al. [21], etc. Numerical techniques have also been widely used to study the

TE serrations as a way of reducing TE noise, see for example those by Jones and35

Sandberg [22], Sanjosé et al. [23] and van der Velden et al. [24]. A number of au-

thors have also conducted analytical studies. Some of the early analytical works

include those by Howe [25, 26], where a tailored Green’s function was used to

predict the far-field sound generated by flat plates with sinusoidal and sawtooth

serrations, respectively. However, Howe’s model dramatically overpredicted the40

sound reduction achieved by using TE serrations. Howe’s approach was later

used by Azarpeyvand et al. [27] to study the noise reduction characteristics of

other serration geometries. The recent work by Lyu et al. [28, 29], on the other

hand, used Amiet’s approach and extended Amiet’s model [30, 31] for a straight

trailing edge to the serrated case. The results showed that the principal noise45

reduction mechanism was due to the destructive interference and the predicted

noise reduction was more realistic compared to experimental results.

Although the TE noise and LE noise are due to different noise generation

mechanisms, mathematically they bear a striking similarity, hence, the tech-

niques used to model the two problems are expected to be similar to each other.50

For example, recent work [32, 14] shows that both the serrated LE noise and

TE noise can be modelled analytically using the Wiener-Hopf method. This

approach has shown good agreement with experiments for LE noise [14]. How-

ever, both the LE and TE solutions involve an infinite-interval integral and two

sums over infinitely many scattering modes, which make their implementations55

both difficult and error-prone.

The issue is addressed in this paper. By exploiting the fact that high-order

modes are cut-off and little coupling between expanded modes occurs except

at very high frequencies, we replace the infinite-interval integral that involves

two infinite sums with one straightforward sum. The simplified model takes a60

particularly concise form when the serration wavelength is small compared to
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the transformed acoustic wavelength. The final results can therefore be easily

implemented numerically in a robust and efficient manner.

This paper is structured as follows. Section 2 shows the essential analyt-

ical steps to reach the final results for both the LE and TE noise problems,65

respectively. Section 3 presents a comparison between the approximated results

obtained in this paper and those obtained from the full analytical solutions.

The following section uses the simplified leading-edge model to compare with

the leading-edge noise spectra observed in experiments. The final section con-

cludes this paper and lists directions for future work.70

2. The leading-edge and trailing-edge noise models

As mentioned in Section 1, the TE and LE noise problems bear a striking

similarity between each other. In either case, to allow the analytical deriva-

tion to continue, the serrated aerofoil is often assumed to be a semi-infinite

plate [1, 33, 14, 13, 28] placed in a uniform incoming flow of constant density ρ̃75

and velocity Ũ at zero angle of attack, as shown in figure 1. The speed of sound

is denoted by c̃0. In the rest of this paper, the serration wavelength is used to

normalized the length dimension, while ρ̃ and Ũ are used to non-dimensionalize

other dynamic variables such as the velocity potential and pressure. In this

paper, we restrict our attention to periodic leading-edge and trailing-edge ser-80

rations. Because the geometric parameters are normalized by the serration

wavelength, the serrations have a period 1. The normalized root-to-tip length

is given by 2h. Let x, y, z denote the streamwise, spanwise and normal to the

plate directions, respectively, and the coordinate origin is fixed in the middle

between the root and tip. In such a coordinate frame, the serration profile can85

be described by x = hF (y), where F (y) is a single-valued function that has a

maximum value 1 and minimum value −1. Moreover, we require 1 to be the

smallest period. Other than these constraints, the function F (y) is arbitrary.

Figure 1 illustrates the geometric similarity and coordinate symmetry of

the leading-edge and trailing-edge configurations. Despite this symmetry, the90

physics they represent is quite different. For the leading-edge problem, the

unsteady flow fluctuations, due to the incoming turbulence convected by the
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Figure 1: Schematic illustrations of the simplified semi-infinite flat plate with leading-edge

and trailing-edge serrations. Both the trailing-edge and leading-edge serrations are periodic

and have a non-dimensional wavelength of 1 and root-to-tip amplitude of 2h. Uniform flows of

Mach number M are shown in both configurations, which bear a striking geometric similarity

due to coordinate symmetry.

mean flow, are scattered into sound near the leading edge of the flat plate,

whereas in the trailing-edge problem the source of scattering is the turbulence

beneath turbulent boundary layers. The boundary conditions required by these95

two problems are therefore quite different. As such, we need to discuss them

separately.

2.1. The leading-edge noise problem

When the turbulence in the mean flow passes the leading edge, a scattered

potential flow is induced. The scattered potential ensures that appropriate

boundary conditions are satisfied. In the leading-edge noise problem, the vertical

velocity fluctuation of the incoming turbulence is of primary concern. The

turbulence in the mean flow consists of a wide range of time and length scales.

However, one can always perform a Fourier Transformation on the incoming

vertical velocity field, such that it can be written as

wi =

∫ ∞
−∞

ŵ0(ω, k2)ei(−ωt+k1x+k2y)dk2, (1)
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where t denotes time, ŵ0 the velocity fluctuation in the z direction, ω the angu-

lar frequency and k1 and k2 the wavenumbers in the streamwise and spanwise100

directions, respectively. The turbulence is assumed to be frozen and convects

downstream at a non-dimensional speed of 1. Therefore, one has k1 = ω.

Let φs denote this scattered velocity potential. One can show that φs satisfies

the convective wave equation

∇2φs −M2

(
∂

∂t
+

∂

∂x

)2

φs = 0, (2)

where M = Ũ/c̃0. To ensure that the normal velocity on the plate vanishes, we

require
∂φs
∂z

∣∣∣∣
z=0

= −wi, x > hF (y). (3)

The scattering problem is anti-symmetric across z = 0, therefore we also have

φs|z=0 = 0, x < hF (y). (4)

This mixed boundary condition problem can be solved using the Wiener-

Hopf method [14, 34]. For the sake of brevity we omit the details of the solving

procedure. Interested readers are referred to Ayton and Chaitanya [14] and

the appendix of Lyu et al. [34]. Here we only give the results in the acoustical

far-field as

p(ω, r, θ, y) ≈
∫ ∞
−∞

Hl(ω,x, k2)ŵ0(ω, k2)dk2, (5)

where

Hl(ω,x, k2) =
eiπ/4

√
π

e−ikMx/β2

cos
θ

2
∞∑

n=−∞

k1/β
2 − κn cos θ

k̄1 − κn cos θ

1√
k̄1 + κn

eiκnr

√
r

eiχnyEn(−κn cos θ).

(6)

In equation 6, r, θ and y denote, respectively, the radial, polar and axial axes of

the stretched cylindrical coordinate system (x/β, y, z), i.e. y denotes the axial

axis and θ is the polar angle to the stretched axis x/β in the (x/β, z) plane

(θ = 0 corresponds to the x/β axis) and r =
√

(x/β)2 + z2. In addition, one

has k = ωM , β =
√

1−M2, k̄1 = k1/β, χn = k2 + 2nπ, κn =
√
k2 − χ2

n and

En(−κn cos θ) =

∫ 1

0

ei(k̄1−κn cos θ)h̄F (η)e−i2nπηdη, (7)
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where h̄ = h/β.

Since the incoming turbulence is statistically stationary, the far-field sound is

best formulated statistically. Routine procedure shows that the far-field sound

PSD is given by

Ψ(ω, r, θ, y) = lim
T→∞

π

T
p(ω, r, θ, y)p∗(ω, r, θ, y), (8)

where 2T is the time interval used to performed temporal Fourier transform to

obtain p and the asterisk denotes the complex conjugate. Substituting equa-

tion 5 into 8, we can show that

Ψ(ω, r, θ, y) ≈ 1

πr
cos2 θ

2

×
∫ ∞
−∞

Πl(ω, k2)

∞∑
n=−∞

k1/β
2 − κn cos θ

k̄1 − κn cos θ

En(−κn cos θ)√
k̄1 + κn

eiχnyeiκnr

×
∞∑

m=−∞

[
k1/β

2 − κm cos θ

k̄1 − κm cos θ

Em(−κm cos θ)√
k̄1 + κm

eiχmyeiκmr

]∗
dk2,

(9)

where Πl(ω, k2) is the wavenumber frequency spectrum of the vertical velocity

fluctuations due to the incoming turbulence.105

Experiments and theories have shown that narrow serrations (a small ser-

ration wavelength) are more effective than wide serrations in reducing the LE

noise [9, 13]. This is related to the spanwise correlation length of the incoming

gust, hence to the integral scale of the incoming turbulence. A detailed discus-

sion was given by Lyu and Azarpeyvand [13] and Lyu et al. [34]. Consequently,

for practical usage, we only need to restrict our attention to narrow serrations.

Under the assumption of narrow serrations, equation 9 can be further simpli-

fied. First, we only need to investigate the case where both κn and κm are real,

because otherwise the exponential term eiκnr(eiκmr)∗ causes the whole term to

decay exponentially in the far field. Noting that κn =
√
k̄2 − χ2

n, we see that

κn is real only when −k̄ < χn < k̄. Because we restrict to the case where the

serration wavelength is small, in the frequency range of interest we may have

the convective acoustic wavenumber k̄ < π. It is, therefore, permissible to have

eiκnr(eiκmr)∗ = δnmsgn(<(κn)), (10)
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where sgn(0) = 0 and sgn(x) = ±1 when ±x > 0. Note equation 10 shows that

its right-hand side vanishes when κn is imaginary. This implies that

Ψ(r, θ, y) ∼ 1

πr
cos2 θ

2

∞∑
n=−∞

∫ ∞
−∞

Πl(ω, k2)

×

∣∣∣∣∣(k1/β
2 − κn cos θ)

En(−κn cos θ)

(−κn cos θ + k̄1)
√
k̄1 + κn

∣∣∣∣∣
2

sgn(<(κn))dk2.

(11)

Second, in light of the fact that κn is real only when −k̄ < χn < k̄ and the

serration wavelength is small, the integrand does not vanish only when −2nπ−
k̄ ≤ k2 ≤ −2nπ + k̄. Over such a typically small range of k2, the integrand

of equation 5 does not vary significantly due to its algebraic dependence on

k2 (provided the Mach number is not close to 1). Hence we can take the k2

dependence out of the integral, and change the integration interval to −2nπ− k̄
to −2nπ + k̄, without causing significant errors. Upon doing so, equation 5

simplifies to

Ψ(r, θ, y) ∼ 2k̄

πr
cos2 θ

2

(k1/β
2 − k̄ cos θ)2

(k̄1 − k̄ cos θ)2(k̄1 + k̄)

∞∑
n=−∞

Πl(ω, 2nπ)
∣∣En(−k̄ cos θ)

∣∣2 .
(12)

Equation 12 is of a remarkably neat form compared to the original solution

given by Ayton and Chaitanya [14]. The infinite-interval integral over k2 and

one of the two infinite sums have been eliminated, and the final solution is

shown as a simple sum. This not only permits a rapid numerical evaluation,

but also facilitates the use of wavenumber frequency spectra of the vertical110

velocity fluctuations obtained directly from numerical and experimental data.

Moreover, equation 12 is uniformly valid as a far-field solution for the entire

frequency range irrespective of the value of r, whereas the original solution

in Ayton and Chaitanya [14] exhibits convergence problems at low frequencies

because the choice of r also depends on frequency.115

Equation 12 is obtained by assuming that the serrations are narrow. It would

of course be useful to know how narrow can be regarded as appropriate. This can

be obtained from the criterion that the convective acoustic wavenumber k̄ < π

(recall that lengths are non-dimensionlised by the serration wavelength). In

fact, when π < k̄ ≤ 2π, the overlap between adjacent modes is still rather weak,120
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therefore it is often permissible to assume that the approximation is still valid

when k̄ ≤ 2π. It is clear that this inequality depends only on the (dimensional)

serration wavelength, (dimensional) acoustic wavenumber and Mach number.

This is likely to be satisfied in practical applications. To put this into per-

spective, let us take a typical example applicable in the wind industry for an125

aerofoil of chord 1 m placed in a mean flow of Mach number 0.2. The serration

wavelength is around 2 cm while the serration root-to-tip is around 10 cm. The

inequality will therefore hold for a frequency up to 17 KHz, which is near the

upper limit of the audible frequency range. Thus, our approximation is valid

for the full range of practical interest in this case.130

2.2. The trailing-edge noise problem

When the turbulent boundary layer convects past the trailing edge of a flat

plate, a scattered pressure field is induced. In a similar manner, we may write

the wavenumber frequency spectrum of the wall pressure fluctuations beneath

the boundary layer as

pi =

∫ ∞
−∞

p̂0(ω, k2)ei(−ωt+k1x+k2y)dk2, (13)

where relevant quantities are defined in a similar way as those defined in sec-

tion 2.1, except here p̂0 is the amplitude of the Fourier component of wall

pressure fluctuations and k1 = ω/α, where α is a constant. In other words,

these pressure fluctuations are assumed to convect at a speed of α. Here we use135

a typical value of α ≈ 0.7 [28].

Let ps denote the scattered pressure field, which satisfies the convective wave

equation, i.e.

∇2ps −M2

(
∂

∂t
+

∂

∂x

)2

ps = 0. (14)

The boundary conditions are such that the normal velocity on the plate vanishes,

i.e.
∂ps
∂z

∣∣∣∣
z=0

= 0, x < hF (y), (15)

and that the scattered pressure is 0 on the semi-infinite plane z = 0 and x >

hF (y), i.e.

∆ps|z=0 = −pi, x > hF (y), (16)
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where ∆ps denotes the pressure jump across the plate. The solution ps satisfying

equation 2 subject to the boundary conditions shown in equations 15 and 16

can be found (see for example Ayton [32]) to be

ps(ω, r, θ, y) ≈
∫ ∞
−∞

Ht(ω,x, k2)p̂0(ω, k2)dk2, (17)

where

Ht(ω,x, k2) =
eiπ/4

√
π

e−ikMx/β2

sin
θ

2

×
∞∑

n=−∞

√
−k̄1 − κn

2i(k̄1 − κn cos θ)

eiκnr

√
r

eiχnyEn(−κn cos θ),

(18)

where r, θ are defined similar to those shown in Section 2.1. In addition, χn

and κn are defined the same as those in Section 2.1. However, we now define

k̄1 = (k1 + (kM − k1M
2))/β and

En(−κn cos θ) =

∫ 1

0

ei(k̄1−κn cos θ)h̄F (η)e−i2nπηdη, (19)

where h̄ is similarly defined as h/β. Note here that the definitions of k1 and k̄1

in this trailing-edge noise problem are different from those in the leading-edge

noise problem.

In a very similar manner, the far-field sound PSD can be approximated,

upon assuming the serration wavelength is sufficiently small such that k̄ < π,

to be

Ψ(r, θ, y) ∼ 1

4πr
sin2 θ

2

×
∞∑

n=−∞

∫ ∞
−∞

Πt(ω, k2)

∣∣∣∣∣
√
−k̄1 − κn

(k̄1 − κn cos θ)
En(−κn cos θ)

∣∣∣∣∣
2

sgn(<(κn))dk2,

(20)

where Πt(ω, k2) denotes the wall pressure fluctuations wavenumber frequency

spectrum beneath the turbulent boundary layer close to the trailing edge. Equa-

tion 20 can be further simplified by replacing the integral with a simple sum to

be

Ψ(r, θ, y) ∼ k̄

2πr
sin2 θ

2

k̄1 + k̄

(k̄1 − k̄ cos θ)2

∞∑
n=−∞

Πt(ω, 2nπ)
∣∣En(−k̄ cos θ)

∣∣2 . (21)

Similar to equation 12, equation 21 is of a particularly neat form and uniformly140

valid irrespective of the value of r, and it permits both rapid numerical imple-

mentation and the use of numerical or experimental wall pressure statistics as
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input. It is worth noting equation 21 bears a striking similarity to equation 2.59

in the work of Lyu et al. [28]. The fact that two completely different approaches

lead to consistent results of the same form shows that the essential physics are145

captured in both models. These two equations both show that higher-order

modes are still cut-on and contribute to the far-field, therefore the earlier argu-

ment in Ayton [32] that higher-order modes were neglected in the model of Lyu

et al. [28] was erroneous.

3. Comparison with exact solutions150

In Section 2, we reduce the complex original model to a straightforward

sum and simplify the result significantly when the serrations are sufficiently

narrow (i.e. serration wavelength is small compared to the transformed acoustic

wavelength). In this section, to assess how accurate the approximations are, we

perform a direction comparison between the full and the simplified solutions.155

Firstly, we choose to compare the solutions for LE serrations of a sawtooth

profile as an illustration.

3.1. The leading-edge noise problem

To enable this comparison, we need a realistic wavenumber spectrum Πl(ω, k2)

to model the incoming turbulence. There are a number of empirical models avail-

able and the LE noise prediction model does not depend on any specific spectral

models. As an illustration, here we use the one developed from Von Kármàn

spectrum. Based on this, it can be shown that Πl(ω, k2), i.e. the wavenumber

frequency spectrum of the oncoming normal fluctuation velocity, can be written

as [1, 35, 13]

Πl(ω, k2) =
4TI2

9πk2
e

k̂2
1 + k̂2

2

(1 + k̂2
1 + k̂2

2)7/3
, (22)

where TI denotes the turbulent intensity and ke, k̂1 and k̂2 are given by

ke =

√
πΓ(5/6)

LtΓ(1/3)
, k̂1 =

k1

ke
, k̂2 =

k2

ke
. (23)

In the above equations, Lt is the integral scale of the turbulence (also normalized

by the serration wavelength) and Γ(x) is the Gamma function.160
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Figure 2: Comparison of predicted LE noise spectra from the full and simplified models:

M = 0.18, TI = 0.025, h = 5, Lt = 0.3, r = 30, θ = 90◦ and y = 0.

In order to put equation 22 into perspective, we require a realistic set of

physical parameters of the incoming flow. For the sake of convenience, we use

those given in previous experiments [9, 13], where M = 0.18, TI = 0.025 and

Lt = 0.3. As an illustrative example, we use sawtooth serrations with h = 5.

The observer distance is fixed at r = 30 in the plane of y = 0, but the observer165

angle is varied from θ = 90◦ to 20◦. The far-field PSDs are evaluated from

equations 9 and 12, respectively.

The comparison of the predicted noise spectra at θ = 90◦ is shown in figure 2.

The solid line is obtained from the full solution, i.e. equation 9, while the dashed

line is from the simplified solution, i.e. equation 12. It is clear that the two170

solutions agree excellently over the entire frequency range of interest. We choose

h = 5 because this represents sharp serrations where the approximation is the

least accurate. At such a large value of h we can hardly see the difference

between the full and simplified solutions. We can therefore expect at least

similar, if not better, agreement for smaller values of h.175

Figure 2 is for a fixed observer at 90◦ above the leading edge. Figure 3

shows the predicted noise spectra for the observer at θ = 45◦. The agreement is

similar to that shown in figure 2, and the simplified model serves as an excellent

approximation to the fully integrated solution. Figure 4 shows the simplified

12
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Figure 3: Comparison of predicted LE noise spectra from the full and simplified models:

M = 0.18, TI = 0.025, h = 5, Lt = 0.3, r = 30, θ = 45◦ and y = 0.

and full spectra when θ = 20◦, and the agreement continues to be very good.180

It is worth mentioning, however, the computational costs are very different

for the two solutions. For the full integral solution given by equation 9, it takes

around one hour and a half to obtain the noise spectrum at a single observer

location, whereas on average only 5 ms is needed for the simplified model given

by equation 12. The simplified model is faster than the original model by a185

factor of around 720, 000. More importantly, since no numerical integration of

irregular integrands is involved, the computation is much more robust.

3.2. The trailing-edge noise problem

We now compare the approximated model to the full model for the TE

noise problem. Similarly, the wall pressure wavenumber spectrum needs to be

modelled. As an illustrative example, it suffices to choose Chase’s model [36, 28],

i.e.

Πt(ω, k2) =
4Cmv

∗4δ4k2
1

α [(k2
1 + k2

2)δ2 + χ2]
2 , (24)

where Cm ≈ 0.1533, v∗ ≈ 0.03, χ ≈ 1.33, and δ denotes the non-dimensional

boundary layer thickness. In this paper, we let δ take an approximate value of190

1.01, which corresponds to a realistic non-dimensional boundary layer thickness

for a dimensional chord length of 1 m when the serration wavelength is 0.02 m.
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Figure 4: Comparison of predicted LE noise spectra from the full and simplified models:

M = 0.18, TI = 0.025, h = 5, Lt = 0.3, r = 30, θ = 20◦ and y = 0.

To enable a direct comparison between the approximated and full results, we

again use a sawtooth serration profile with h = 5. The observer distance is fixed

to be r = 30 in the plane of y = 0, and the observer angle is varied from θ = 90◦195

to 20◦. The predicted far-field spectra are plotted using the full solution based on

equation 17 and the approximated solution shown in equation 21, respectively.

The comparison of the noise spectra at θ = 90◦ is shown in figure 5. As we

can see the approximated solution agrees with the full solution with virtually

no difference over the entire frequency range. Note that when k1h is close to200

500, k̄ is slightly larger than 2π. But the difference between the two lines is

still hardly observable. Therefore, the condition k̄ < 2π, although likely to be

satisfied in most practical cases, may be further relaxed in practice.

Figure 5 shows the comparison of the predicted spectra for θ = 45◦. The

agreement continues to be very good, except slight disagreement occurring near205

the minima of the oscillation frequencies. The strong oscillations predicted by

the models are due to the large value of h, i.e. the use of sharp serrations,

leading to strong destructive interference (in experiments, however, these large

dips are unlikely to be observed since the turbulence within the boundary layer

is not strictly frozen). We choose this large value to examine how the simplified210

model works in the least accurate case. Had we used smaller values of h, these
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Figure 5: Comparison of predicted TE noise spectra from the full and simplified models:

M = 0.1, h = 5, δ = 1.01, r = 30, θ = 90◦ and y = 0.
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Figure 6: Comparison of predicted TE noise spectra from the full and simplified models:

M = 0.1, h = 5, δ = 1.01, r = 30, θ = 45◦ and y = 0.
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Figure 7: Comparison of predicted TE noise spectra from the full and simplified models:

M = 0.1, h = 5, δ = 1.01, r = 30, θ = 20◦ and y = 0.

oscillations would have disappeared [32].

Figure 7 shows the two predicted spectra when θ = 20◦. The agreement

continues to be very good over the entire frequency range of interest. Although

the two spectra are virtually identical, the computational costs in obtaining215

them are, as those observed in the LE noise problem, strikingly different: while

the full solution demands an hour for computing a single spectrum, the simplified

model on average only needs a few milliseconds. In summary, the approximated

solution serves as an efficient model for the TE noise problem. More importantly,

the simplified TE noise model can be easily implemented and the computation220

is very robust, while the numerical integration in the full solution is prone to

error due to the non-smooth behaviour of the integrand.

4. Comparison with experiments

Results from these simplified models can be directly compared with exper-

imental data. Due to the similar nature of approximation, it suffices to focus225

on the leading-edge model. Nevertheless, for completeness we also include some

experimental results on TE noise subsequently. For the LE model, we choose to

compare with the recent experimental results reported in Ayton and Chaitanya

16



[14] and use the sawtooth serration as an example.

4.1. Leading-edge noise230

The experiment was carried out in the acoustic wind tunnel at the Institute

of Sound and Vibration of Southampton University. The test facility features a

8 m×8 m×8 m anechoic chamber and a low-speed wind tunnel with a nozzle of

150 mm× 450 mm. More details on the test facility can be found in Ayton and

Chaitanya [14]. Flat plates having a chord of 150 mm and span of 450 mm with235

serrated leading edges were placed in the middle of the rectangular jet such that

the mean LE line was 150 mm downstream of the nozzle exit. The serrations

had a wavelength of 25 mm, but the half root-to-tip amplitude was varied from

6.25 mm to 25 mm. Therefore, the corresponding h was varied from 1/4 and 1.

Free stream turbulence was generated by a rectangular grid of 630 mm ×
690 mm inside the contraction section located 75 cm upstream from the nozzle

exit. The dimensionless turbulence spectrum Πl(ω, k2) was characterised using

the Liepmann model, i.e.

Πl(ω, k2) =
3TI2L2

t

4π

L2
t (k

2
1 + k2

2)

(1 + L2
t (k

2
1 + k2

2))5/2
, (25)

where TI and Lt were, as defined in section 3.1, the turbulence intensity and240

streamwise integral length scale, respectively. Note that we use Liepmann model

here partly because it was used by Ayton and Chaitanya [14] and we wish to be

consistent with the earlier result, and partly because we wish to demonstrate

that the noise prediction model does not depend on any specific spectral models

for the incoming turbulence and changing it is very straightforward due to the245

simple nature of equation 12. In fact, the remarkably simple form of equation 12

directly facilitates the use of numerical or experimental turbulence spectra in

predicting LE noise. With equation 25, equation 12 can be quickly evaluated and

the results can be compared with the noise spectra obtained in the experiment.

These are presented in figures 8 to 10, where not only the absolute LE noise250

spectra but also the noise reduction spectra are shown. To have an intuitive

understanding of the frequency and amplitude, noise spectra are shown in their

dimensional forms.
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Figure 8: Comparison of the noise spectra between model prediction and experimental mea-

surements when h = 1/4.

We start comparing the model and experimental results for the short serra-

tion, i.e. for h = 1/4. The far-field noise spectra are presented in figure 8(a).255

Both the serrated and baseline (h = 0) spectra are shown. It is well known that

in leading-edge noise experiments the low-frequency sound measured in the far

field is dominated by jet noise. Therefore, we do not make a direct comparison

for frequencies less than 2000 Hz. Good agreement is achieved, however, in the

frequency range of 2000 to 10000 Hz for the baseline spectra. This shows that260

the simplified model works well for straight edges. In addition, the model pre-

dicts that a noise reduction of around 3 dB can be achieved by using the short

serration of h = 1/4, as shown in figure 8(b). The experimental data agree with

such a prediction very well.

Figure 9 shows the comparison for h = 1/2. As can be seen from figure 9(a),265

using the longer serration results in a higher noise reduction of up to 8 dB

in the experiment. The model can capture this change accurately and the

resulting spectrum for the serrated edge agrees very well with that observed in

the experiment. This is not surprising given that the simplified model agrees

with the full solution to a high degree of accuracy. From the noise reduction270

spectra, shown in figure 9(b), one can see that at the very high frequencies, the

observed noise reduction starts to drop. This signifies the emerging influence of

other noise sources, such as TE noise, the effect of which will be more evident
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Figure 9: Comparison of the noise spectra between model prediction and experimental mea-

surements when h = 1/2.

in the following figure.
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Figure 10: Comparison of the noise spectra between model prediction and experimental mea-

surements when h = 1.

Figure 10 shows the comparison for the long serration, i.e. for h = 1. We275

expect an even greater noise reduction due to the use of serrations, and this

is confirmed by the experiment, which shows a noise reduction of up to more

than 10 dB, as shown in figure 10(a). However, the predicted noise reduction

is around 15 dB. The model therefore underpredicts the noise emitted by flat

plates with long leading-edge serrations, especially at high frequencies, as shown280

in figure 10(b). However, this is not due to the failure of the simplified model,
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but rather due to the effect of neglecting the contribution of trailing-edge noise,

which occurs in the experiment and begins to dominate when leading-edge noise

is sufficiently suppressed. In their recent work, Bampanis et al. [37] used source

localization techniques to filter out TE noise, and they found that once TE noise285

is removed, LE noise reduction continues to increase as frequency increases,

and a noise reduction of more than 15 dB can be observed. This is consistent

with our current prediction, as can be seen from figure 10(b). Moreover, it

has been shown by Ayton and Chaitanya [14] that adding in a trailing-edge

noise contribution results in good agreement with the experimental spectrum.290

However, as this section is aimed at verifying the LE noise model, the trailing-

edge noise contribution has been excluded.

Figures 8 and 10 show that the simplified model serves as an accurate ap-

proximation to the full solution, which is both computationally expensive and

error-prone. The simplified model overcomes these two issues and is both effi-295

cient and robust.

4.2. Trailing-edge noise

While LE models tend to agree well with experimental results, TE models

are known to agree less favourably. A number of reasons are known to con-

tribute to this. First, the wavenumber frequency spectra of the wall pressure300

fluctuations are very sensitive to the realistic geometry and angle of attack of

the aerofoils used in the TE experiments, and consequently cannot be character-

ized as accurately as the incoming grid turbulence in the LE noise experiments.

This results in less accurate TE noise predictions. Second, when a turbulent

boundary layer convects past the trailing edge of an aerofoil, noise due to other305

sources coexists with TE noise, such as the noise from vortex pairs and jet flows

across the serration valleys [38, 39]. These additional source mechanisms lead to

scattered experimental results and hence inevitable discrepancies between the

experimental data and TE noise predictions.

Figure 11(a) shows the noise reduction spectra from three different experi-310

ments and one Direct Numerical Simulations (DNS). The three experiments are

specifically chosen to have similar operating conditions. For example, in the

experiment of León et al. [38] M = 0.1, h = 1 and the angle of attack is fixed at
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Figure 11: Noise reduction spectra due to the use of sawtooth serrations: a) experimentally

measured noise reduction spectra under similar configurations are scattered across a wide

range of values. In León et al. [38], M = 0.1, h = 1 and the angle of attack (AoA) is 0◦;

in Chong et al. [16], M = 0.16, h = 1.18 and the AoA is 4.2◦; in Gruber [39], M = 0.12,

h = 0.85 and the AoA is 5◦; in Jones and Sandberg [22], M = 0.4, h = 1.2, and the AoA is 5◦.

b) a crude estimation of the TE noise reduction using Chase’s model qualitatively captures

the spectral trend shown in León et al. [38] at low frequencies, while deviation occurs at high

frequencies mostly likely due to the appearance of other source mechanisms.

0◦, while in the study of Chong et al. [16] M = 0.16, h = 1.18 and the angle of

attack is fixed at 4.2◦. All three experiments also share similar Reynolds num-315

bers and the serrations used in these experiments are of similar physical sizes.

However, one can see that the noise reduction spectra differ significantly from

each other. The sensitivity of the wall pressure fluctuations on the geometry

and angle of attack of the aerofoils and the appearance of other noise source

mechanisms are likely to be the primary reasons for such differences.320

The aim of this section is to validate the mathematical techniques used in

Section 2 to develop the rapid LE and TE models. As far as this aim is con-

cerned, the successful validation of LE noise model in the preceding section is

sufficient because of the similar mathematical techniques used in deriving both

models. Nevertheless, for completeness, we can also show a brief comparison be-325

tween the TE model prediction and experiment data in the literature. However,

in most experiments, such as those shown in figure 11(a), the wavenumber fre-

quency spectra of the wall pressure fluctuations beneath the turbulent boundary
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layers are not known. To enable a qualitative comparison, we will use Chase’s

model for the wall pressure spectra over flat plates to obtain a crude estimation330

of the noise reduction. Noting the inevitable discrepancies introduced by the

use of Chase’s model and the appearance of other noise source mechanisms, we

do not aim for a quantitative comparison between the model predictions and

the experiments, but rather our focus is on the qualitative behaviour of the

estimated noise reduction and what might be educed about the complex flow335

behaviour in the vicinity of serrations.

Figure 11(b) shows the noise reduction spectra measured by León et al. [38]

and estimated by using Chase’s model and equation 21. The result of León et al.

[38] is chosen because of its zero angle of attack in the experiment. In evaluat-

ing equation 21, the Mach number is taken to be M = 0.1, the dimensionless340

half root-to-tip amplitude h = 1, and the dimensional serration wavelength and

boundary thickness are taken to be 20 mm and 15.9 mm, respectively. As can

be seen from figure 11(b), at low frequencies the predicted noise reduction am-

plitude is close to that observed, however, as frequency increases the predicted

noise reduction is increasingly large, whereas the observed reduction goes down.345

Such a deviation is likely to be caused by a combination of the inaccurate model

for the wall pressure fluctuations and the appearance of other noise sources. In

particular, the relative sharp performance drop at 3 kHz strongly suggests the

emergence of other noise sources. Figure 11(b) shows the crucial importance

of correctly modelling the wavenumber frequency spectra of the wall pressure350

fluctuations in order to correctly reproduce the experimental results. This will

be studied more closely in our future work. We note that the TE model, i.e.

equation 21, does not depend on any specific wall pressure spectra, and making

use of spectra from either numerical simulations or experiments is very straight-

forward due to the remarkably simple nature of equation 21.355

5. Conclusion and future work

This paper develops rapid noise prediction models for serrated leading and

trailing edges. This is based on the fact that high order modes are cut-off and

adjacent modes do not interfere in the far field except at sufficiently high frequen-
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cies, so the infinite-interval integral involving two infinite sums may be replaced360

by just one straightforward sum. The resulting models take particularly concise

forms when the serration is sufficiently narrow such that the convective acous-

tic wavenumber k̄ < π (or more roughly k̄ < 2π) is satisfied in the frequency

range of interest. In practice this condition may afford further relaxation. A

comparison of these simplified models to the full analytical solutions shows that365

the obtained models serve as excellent approximations over the entire frequency

range of interest.

The leading-edge noise model is compared with experimental results for saw-

tooth serrations of various root-to-tip amplitudes. Good agreement is achieved

for both h = 1/4 and h = 1/2. Deviation occurs for h = 1 but this is due to the370

contribution of trailing-edge noise to the total noise observed in the experiment,

and the simplified model continues to approximate the full solution with a great

degree of accuracy. Because of the lack of accurate wall pressure statistics, a

qualitative TE noise estimation using Chase’s model is compared with one of

TE noise results measured experimentally. The results demonstrate the impor-375

tance of accurately modelling the wavenumber frequency spectra for the wall

pressure fluctuations beneath turbulent boundary layers in order to correctly

predict TE noise.

The models developed in this paper are robust, efficient, and can be easily

implemented. For example, a typical noise spectrum can be obtained within380

a few milliseconds using these models, while it takes hours to evaluate the

original full solutions. The efficiency and robustness would allow parametric

optimization studies to be performed quickly, which is important at the design

stage of many applications.
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